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In this article we investigate time-periodic shear flows in the context of the two-
dimensional vorticity equation, which may be applied to describe certain large-scale
atmospheric and oceanic flows. The linear stability analyses of both discrete and conti-
nuous profiles demonstrate that parametric instability can arise even in this simple
model: the oscillations can stabilize (destabilize) an otherwise unstable (stable) shear
flow, as in Mathieu’s equation (Stoker 1950). Nonlinear simulations of the continuous
oscillatory basic state support the predictions from linear theory and, in addition,
illustrate the evolution of the instability process and thereby show the structure of the
vortices that emerge. The discovery of parametric instability in this model suggests
that this mechanism can occur in geophysical shear flows and provides an additional
means through which turbulent mixing can be generated in large-scale flows.

1. Introduction
The Earth’s atmosphere and oceans are forced by numerous different physical

mechanisms that produce variability or periodicity on many different time scales,
i.e. yearly, seasonally, daily and tidally. In addition, independently of any periodic
forcings, oscillations can be generated from nonlinear dynamics in the form of
amplitude vacillations in otherwise steady flows (Pedlosky 1987). Even though periodic
flows are ubiquitous in nature, the instability of time-dependent shear flows has
received relatively little attention in comparison to that of time-independent ones.
Instead of studying a time-dependent flow, the time average of the basic state has
often been analysed in the belief that it adequately describes the full problem.
However, important information is lost in this approximation which can result in both
quantitative and qualitative differences between the predictions and the observations.
The time dependence is important since it can destabilize (stabilize) a flow, which
consequently alters the transport of heat, momentum and mass (Davis 1976). The im-
portance of time dependence has been emphasized in the context of internal waves in
Broutman, Macaskill & McIntyre (1997). In the present article, we study simple os-
cillatory shear flows in order to determine which phenomena can arise that are absent
in the steady case.

† Present address: Mathematical Institute, North Haugh, Room 221, University of St. Andrews,
St. Andrews, Fife, KY16 9SS, UK.
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Our definition of instability for a time-periodic basic state is taken from Rosenblat
(1968) and Davis (1976). A periodic basic state is unstable if there exists a perturbation
that experiences net growth over each period. If the perturbations decay at every
instant, the basic state is said to be stable or monotonically stable. The system is
transiently stable if there is no net growth after one cycle; however, there may be
intervals when disturbances grow and other times when they decay.

A simple example of an oscillatory dynamical system is the pendulum with the
suspension point oscillated vertically. Its linear stability is governed by Mathieu’s
equation. The stability of the stationary states can be altered by oscillating the
suspension point (Stoker 1950); this change of stability is called parametric resonance
or parametric instability.

Early experiments by Faraday using a square tank oscillated in the vertical direction
proved that parametric instability can arise in the context of surface gravity waves
(Benjamin & Ursell 1954; Drazin & Reid 1995). Subsequent studies have discovered
that parametric instability can occur in internal gravity waves via a resonant wave
triad interaction (McEwan & Robinson 1975; Staquet & Sommeria 2002). In this
resonant triad, the energy is transferred from the two larger waves to the smallest
one. Also, since the most unstable mode is a subharmonic, the instability transfers
energy to longer time scales.

The first discovery of parametric instability in oscillatory shears was by Greenspan
& Benney (1963). They investigated a simple piecewise-linear velocity profile in the
context of the barotropic two-dimensional vorticity equation. They determined that
the periodic contractions and expansions of the jet generated parametric resonance.
Our work differs significantly from Greenspan & Benney (1963) in that we do not
allow for the expansion and contraction in the fluid. Instead, we study parametric
instability that arises in an incompressible flow with an oscillatory flow that has a
non-zero mean shear.

The oscillatory Kelvin–Helmholtz problem was analysed by Kelly (1965) who
discovered instances where the oscillations stabilized an otherwise unstable shear
flow. However, he did not find examples where the oscillations destabilized the flow.
Kelly’s model is fundamentally different from ours in that his is irrotational (except
at the interface) and the flow is stabilized by gravity and surface tension.

In order to determine for which wave amplitudes the secondary instabilities are
dominant over the primary ones, a subsequent paper, Kelly (1967), studied the
interaction of a steady shear with the oscillatory most unstable wave generated by
the primary Kelvin–Helmholtz instability. This differs from our work in that the
oscillatory state is non-parallel, since it has variation in the along-flow direction.
Moreover, Kelly (1967) only finds instances where the oscillations destabilize the flow,
with no evidence of stabilization.

Rosenblat (1968) analysed the stability of time-periodic azimuthal flows between
coaxial, circular cylinders, which are typically referred to as modulated Taylor–
Couette flows. The physics of this problem is fundamentally different from the one we
investigate since Taylor–Couette flow is a centrifugal instability in a curved geometry.
In particular, Rosenblat (1968) considered perturbations in the vertical plane and
assumed that they were azimuthally invariant. This implies that the instabilities that
arise are associated with a convective-like overturning rather than the horizontal
roll-up which occurs when waves on vorticity gradients are predominant.

Rosenblat’s study of the inviscid dynamics with axisymmetric disturbances
discovered several interesting properties arising from the oscillations of the basic state.
First, the so-called rigid-body oscillations, where the azimuthal velocity is a function
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of the radial coordinate multiplied by a periodic function of time with zero mean, are
all transiently stable. Second, a superposition of two different profiles that oscillate
out of phase, each having a zero time average, generates parametric instability. Third,
the linear stability problem of flows with non-zero mean flow and oscillations of
infinitesimal amplitude is described by Mathieu’s equation and therefore produces
subharmonic resonance.

Since Rosenblat (1968) there have been theoretical and experimental studies of
Taylor–Couette flow with viscosity for particular shear profiles (Walsh & Donnelly
1988; Hu 1995; Ern & Wesfreid 1999; Normand 2000; Lopez & Marques 2002) which
support the conclusion of Rosenblat (1968) that the oscillations can either stabilize
or destabilize the flow. There have been other related studies of Taylor–Couette flows
where each cylinder rotates azimuthally at a fixed rate but the inner cylinder oscillates
in the radial direction (Marques & Lopez 1997, 2000; Meseguer & Marques 2000).
They conclude that the oscillation in the axial direction always has a stabilizing
effect. The study of oscillatory Poiseuille flow by Kerczek (1982) determined that
oscillations either slightly stabilize or destabilize the flow, but there was no evidence
of bifurcations in the stability properties.

Recently, Pedlosky & Thomson (2002) studied the baroclinic instability of a zonal
current on a beta-plane when the vertical shear is a periodic function of time. They
discovered examples of parametric instability that would stabilize or destabilize the
shear, but the instability mechanism is different from the one we study here.

In § 2 we derive the equations that govern the linear stability of an oscillatory, hori-
zontal, planar shear flow. Then in § 3 we investigate the stability properties of pure
oscillatory shear flow to show that if the temporal average is zero, the flow is transi-
ently stable. Subsequently, in § 4, we examine the interaction of a steady background
flow of constant non-zero vorticity with an oscillatory shear having two jumps in
vorticity. This simple example demonstrates that oscillations can either stabilize or
destabilize the flow. We derive criteria to calculate the transition wavenumbers and
then perform a multiple-scale analysis to determine the growth rate in the first subhar-
monic tongues in parameter space. We also study the mixed barotropic–parametric
instability to discern what effect oscillations have on a barotropically unstable mode.
Next, in § 5 we solve the linear stability problem for continuous oscillatory shears,
find examples of parametric instability, and study the nonlinear evolution of these
flows. Finally, § 6 contains a summary of our findings and a discussion of their
importance to geophysical flows.

2. Governing equations
Consider the homogeneous two-dimensional Euler equations for a fluid of uniform

depth. The incompressibility of the system permits the horizontal velocity field to be

written in terms of a stream function, u = k̂ × ∇ψ . This implies that the vorticity

q = k̂ · ∇ × u and the stream function are related by

q = ∇2ψ. (2.1)

The two-dimensional vorticity equation is

∂q

∂t
+ J (ψ, q) = F (y, t), (2.2)

where J (A, B) = AxBy − AyBx is the Jacobian operator and subscripts denote
partial differentiation. The along-flow coordinate, x, is periodic and the across-flow
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coordinate, y, is unbounded. The function F (y, t) denotes the time-dependent forcing
which maintains the oscillatory flow and defines the vorticity of the basic state q̄(y, t)
by the equation

∂q̄

∂t
= F (y, t). (2.3)

To determine the stability of the basic state, we perturb the vorticity and stream
function in the standard fashion:

q(x, y, t) = q̄(y, t) + q ′(x, y, t), (2.4)

ψ(x, y, t) = ψ̄(y, t) + ψ ′(x, y, t). (2.5)

The substitution of this into (2.1) implies that the perturbation vorticity is equal to the
Laplacian of the perturbation stream function. To derive the equation that governs
the linear perturbation dynamics, we substitute (2.4) and (2.5) into (2.2) and linearize
to obtain

∂q ′

∂t
+ ū

∂q ′

∂x
+ q̄y

∂ψ ′

∂x
= 0. (2.6)

The fields ū(y, t) and q̄y(y, t) are the velocity and across-flow gradient of vorticity of
the background flow.

The fact that our geometry is periodic in the x-direction enables us to decompose
the perturbation fields as normal modes in x with wavenumber k such that both
q ′(x, y, t) and ψ ′(x, y, t) are proportional to exp(ikx). This simplifies the inversion of
equation (2.1), yielding the following equation for the stream function in terms of the
vorticity:

ψ ′(x, y, t) = − 1

2k

∫ +∞

−∞
exp(−k|y ′ − y|) q ′(x, y ′, t) dy ′. (2.7)

When this, along with the modal decomposition, is substituted into (2.6) we obtain

∂q ′

∂t
+ ik ū q ′ =

i

2
q̄y

∫ +∞

−∞
exp(−k|y ′ − y|) q ′(x, y ′, t) dy ′. (2.8)

2.1. Discrete spectrum

Rather than study this integral equation in generality, let us restrict our attention to
forcing functions of the form

F (y, t) =
dS

dt

N∑
n=1

�nH(y − yn), (2.9)

where H(y) is the Heaviside step function, S(t)�n is the vorticity jump across the
line yn at time t and S(t) is, in general, a periodic function of t . This particular
forcing yields a system composed of N +1 strips of uniform vorticity with N contour
interfaces. This system of dynamical equations is equivalent to that which would arise
if we calculated the linearized equations from a contour dynamical perspective with
N interfaces (Zabusky & Overman 1983; Dritschel 1989; Pullin 1992; Silveira & Flierl
2002).
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By substituting (2.9) into (2.3) and integrating, we solve for the vorticity field of
the basic state and its spatial gradient:

q̄(y, t) = S(t)

N∑
n=1

�nH(y − yn) + q0(y), (2.10)

and

q̄y(y, t) = S(t)

N∑
n=1

�nδ(y − yn) +
dq0

dy
(y). (2.11)

A non-zero function of integration, q0(y), introduces a non-oscillatory component in
the flow; it is a control parameter for stability. Throughout, we restrict our attention
to the case where q0 is constant. Integration of equation (2.10) yields the velocity of
the basic state,

ūm ≡ ū(ym)

S(t)
= − q0

S(t)
ym −

N∑
n=1

�n max{(ym − yn), 0}. (2.12)

We substitute (2.11) into (2.8) to obtain the governing equation for the linear
stability problem for the case of N contours and discrete perturbations only:

dq ′
m

dt
= −ik S(t)ūm q ′

m +
i

2
S(t)�m

N∑
n=1

exp(−k|ym − yn|)q ′
n. (2.13)

The discrete nature of equation (2.13) implies that this model will not capture
instabilities arising from the continuous spectrum. In the steady case, such modes
decay algebraically (Case 1960), and the instability arises from the modes associated
with the change in sign of the vorticity gradient, which (2.13) captures adequately.
This does not rule out the possibility that the continuous modes could play a role in
the oscillating shear problem, but it does seem much less likely that a critical layer is
significant given the changes in shape and amplitude of the mean flow.

In the next section we set q0 = 0, in which case all fields are directly proportional to
a periodic function S(t): this gives us pure oscillatory flows. Then, in § 4, we study a
flow that comprises a superposition of an oscillatory jet and a non-zero mean shear:
mixed oscillatory flows. The parameter q0 is taken to be constant for the sake of
mathematical simplicity. This is a good approximation for those situations where the
oscillatory shear has a smaller length scale than the mean shear. We do not address
other expressions for q0 in this work but note that they are also of interest to study.

Throughout, we focus on the simple case where the basic state oscillates at only
one forcing frequency. For a particular resonance, if there is only one frequency that
generates this instability, the inclusion of other frequencies would make a negligible
contribution to the instability process. Therefore this approach of considering a
solitary frequency still yields meaningful results, even in the case of multiple forcing
frequencies.

3. Pure oscillatory flows
3.1. Discrete problem

For steady flows (S =constant) it is natural to decompose the perturbation in normal
modes and then treat each mode separately:

q ′
m ≡ q ′(x, ym, t) = Re{q̂m exp(ikx + iσ t)}, (3.1)
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where k and σ are the wavenumber and frequency of the perturbation. For notational
simplicity we define an N -vector, q, which has q̂m as the mth component. If we
substitute (3.1) into (2.13), we obtain the algebraic eigenvalue problem

σ q = SM q, (3.2)

where the (m, n)-component of the N × N matrix M is

−k δmnūm + 1
2
�m exp(−k|ym − yn|) (3.3)

and δmn is the Kronecker delta function. If the imaginary part of any of the eigenvalues
of (3.2) is negative, then the state is barotropically unstable.

To analyse time-dependent basic flows, we rewrite (2.13) as a system of ordinary
differential equations

dq
dt

= i S(t)M q. (3.4)

Here, q is the vector having q ′
m as its elements. In the case where q0 = 0, the matrix

M is constant and therefore the exact solution is

q = exp

(
i M

∫ t

0

S(s) ds

)
q0. (3.5)

Assuming that M is non-defective, we can rewrite it as M = X D X −1, where D is a
matrix with eigenvalues in the diagonal and X is the matrix of column eigenvectors. By
substituting the eigenvalue decomposition into (3.5) and setting S(t) = δ + ε cos(ωt),
the solution becomes

q = X exp

(
i t

[
δ + ε

sin(ωt)

ωt

]
D

)
X −1q0. (3.6)

Throughout this article, there is no restriction on the magnitude of ε and δ except in
the multiple-scales analysis, where it is explicitly required that ε � 1.

Since D is diagonal, the exponential matrix above is simply a diagonal matrix with
each entry of the form

exp

(
it

[
δ + ε

sin(ωt)

(ωt)

]
cn

)
; (3.7)

n ranges between 1 and N and cn is the nth eigenvalue of M. Note that if ε = 0, (3.6)
reduces to the stability problem for the steady-state solution.

Observe that if the mean of the oscillatory flow is zero (δ = 0), the periodic shear
is transiently stable: there are intervals of both growth and decay, but after an entire
period there is no net growth. This result is analogous to that of Rosenblat (1968),
which states that all rigid-body oscillations of the Taylor–Couette flow are transiently
stable.

In the general case where δ and ε are both non-zero, we have a superposition of
the previous two cases. For an unstable wavenumber, if δ is positive, the mode will
continually grow as in the steady-state theory and hence the solution is unstable.
Therefore the stability of the unsteady flow is entirely determined by the mean
profile: if the latter, viewed as a steady flow, is unstable (stable) then the flow
oscillating around that mean will likewise be unstable (stable).

3.2. Continuous problem

The linear stability results we have just proved do not depend on the number of
contour interfaces chosen in the forcing function (2.9). The fact that these results hold
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with increasing N suggests that they will also hold for continuous profiles. This is the
next issue we investigate, but first we study the stability of continuous steady flows.
The perturbation is decomposed as

q ′(x, y, t) = Re{q̂(y) exp(ikx + iσ t)}. (3.8)

If we substitute this into (2.8) and assume S is constant, we obtain the following
eigenvalue problem:

σ q̂(y) = SM(q̂(y)) (3.9)

in terms of the integral operator M defined as

M(q̂(y)) = −kūq̂ +
q̄y

2

∫ +∞

−∞
exp(−k|y − y ′|)q̂(y ′) dy ′. (3.10)

For time-dependent basic states we must decompose the perturbation as

q ′(x, y, t) = Re{q̂(y, t) exp(ikx)}. (3.11)

The linear stability problem is then governed by the integral equation

∂q̂

∂t
(y, t) = i S(t)M(q̂(y, t)), (3.12)

in terms of the operator (3.10); q̄y is now interpreted as a partial derivative. Assuming
that q̂ is q̂(t) times a y structure which is an eigenfunction enables us to replace M
by the eigenvalue σ and obtain

dq̂

dt
= i S(t)σ q̂. (3.13)

This gives

q̂ = q0 exp

[
iσ

∫ t

S(s) ds

]
, (3.14)

analogous to (3.5). If S(t) is constant, we obtain the steady-state case. If S(t) has zero
mean, all modes are transiently stable. Moreover, if δ and ε are both non-zero we
obtain instabilities at precisely the same wavenumbers that are unstable in the steady
case; in addition, the growth rates match those for the mean profile. If the integral
operator M is complete then this analysis implies that the oscillatory continuous case
is unstable if and only if the mean profile is. Any discretization of the continuous
system, even with many interfaces, yields the same results. Apparently a single profile
multiplied by S(t) does not have a rich enough structure to generate new types of
instabilities. (Again, we note that the operator is often not complete; the effects of
the continuous spectrum are not known.)

4. Mixed oscillatory shears: two-contour example
In this section, we study mixed oscillatory shears, i.e. an oscillatory shear superim-

posed upon a steady shear. The non-oscillatory component is a flow with a uniform
non-zero shear and the oscillatory jet contains two jumps in vorticity. The two jumps
are located at y1,2 = ∓a and the vorticity jumps are �1,2 = ∓1. The velocities at the
two interfaces are ū1,2 = ∓(1 − q0/S(t))a. The governing linear equation is obtained
by specializing (2.13) to this particular shear flow and defining K = 2ak:

dq
dt

=
i

2
S

[
K(1 − q0/S) − 1 − exp(−K)

exp(−K) −K(1 − q0/S) + 1

]
q. (4.1)
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Again, we start with the case where S is constant so that

q ′
m = exp(iσ t)q̂m, (4.2)

which yields the following eigenvalue problem:

4σ 2

S2
= (K(1 − q0/S) − 1)2 − exp(−2K). (4.3)

A criterion that is necessary and sufficient for the imaginary part of the frequency to
be zero, and therefore for linear stability, is (Dritschel 1989)

q0

S
< 1. (4.4)

If q0 = 1, the steady state is only stable for 0 � S � 1, where S = δ for ε = 0.
We analyse the stability of periodic shear flows using Floquet theory. The particular

oscillatory state we study is that with q0 = 1, δ = 1/2, ε = 1/2 and ω = 1. Snapshots
of the basic state at every instant in time are stable by the steady criterion (4.4);
therefore, any instabilities that are found must be parametric in nature. Next, we
determine the location of the transition points. We then use a multiple-scale analysis
to determine the growth rates of the first subharmonic, which is the most unstable
region and hence the most important.

To determine the growth rates of the basic state for a particular wavenumber
involves two steps. First, the column vectors of the identity matrix are taken to
be initial conditions for the dynamical system (4.1), which is integrated numerically
by one period. The particular method we use to integrate this system of ordinary
differential equations is the fourth-order Runge–Kutta scheme implemented in Matlab.
The resulting matrix, called the Floquet matrix, determines the stability of the system.
If the Floquet matrix has an eigenvalue that has a positive real component the system
is unstable. The real part of this eigenvalue gives the growth rate over one period;
we divide this by the period to determine the growth rate per unit of time.

4.1. Transition points

We rewrite equation (4.1) as a scalar second-order equation,

d2q ′

dt2
− 1

S

dS

dt

dq ′

dt
+

(
S2

4

[(
K

(
1 − q0

S

)
− 1

)2

− exp(−2K)

]2

+
i

2
Kq0

1

S

dS

dt

)
q ′ = 0.

(4.5)

This equation is satisfied at both interfaces and hence the subscript has been dropped.
We explicitly state Mathieu’s equation in order that the reader may appreciate the
similarities and differences of the two problems:

d2q

dt2
+ (δ + ε cos(ωt))q = 0. (4.6)

The Wronskian of equation (4.5) is

W (t) = W (0) exp

(
−

∫ t

0

1

S

dS

dt

)
= W (0)

δ + ε

δ + ε cos(ωt)
. (4.7)

W (t) is a periodic function of period T = 2π/ω. This differs from Mathieu’s equation
which has a constant Wronskian. However, a periodic Wronskian is sufficient to
conclude, as in Mathieu’s equation, that the transition solutions between stability and
instability must be of period T or 2T . This result is not explicitly stated in Stoker
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Figure 1. The curved lines are the dispersion relations of the waves in the system with S = 1/2,
q0 = 1 and ω = 1. The solid and dashed vertical lines indicate where the subharmonic and
harmonic instabilities are located, respectively. These lines show the location of the transition
wavenumbers, i.e. where a resonance occurs. The length of each is a multiple of the frequency,
in this case 1.

(1950), but it can be deduced from the discussion of “The Stability problem for Hill’s
equation and the Mathieu equation” in Chapter 6.

Consider the case of a nearly steady basic state, i.e. the asymptotic limit of ε � 1
and S ∼ δ. The leading-order equation (4.5) reduces to the simple harmonic oscillator
where the frequency σ is defined by (4.3). Since the transition solutions must be of
period T or 2T , it is necessary that the frequency of the motion satisfy the relationship

σ 2 =
n2ω2

4
, (4.8)

where n is a positive integer. This equation determines the position of the transition
points in the case of ε = 0 and therefore where the regions of instabilities develop for
small ε; the odd and even n correspond to subharmonics and harmonics, respectively.
In particular, figure 1 illustrates the dispersion relationship for the waves in this
two-contour problem. The vertical lines indicate the position of the subharmonic and
harmonic transition points.

4.2. Multiple scales

Our next aim is to calculate analytically the growth rate of the first subharmonic in
the regime ε � 1 by using the method of multiple scales for arbitrary values of the
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two parameters δ/ω and q0/δ. To begin, we define the matrices

M0 =
i

2

δ

ω

[
K(1 − q0/δ) − 1 − exp(−K)

exp(−K) −K(1 − q0/δ) + 1

]
(4.9)

and

M1 =
i

2ω

[
K − 1 − exp(−K)

exp(−K) −K + 1

]
(4.10)

to rewrite the governing linear system (4.1) as

dq
dt

= M0q + ε cos(ωt)M1q, (4.11)

where q is a time-dependent 2-vector. The fact that for Mathieu’s equation the first
subharmonic region grows linearly with the amplitude of the oscillations suggests
that we should choose the long-time variable to be T = εt (Stoker 1950).

If we expand q as a perturbation series,

q = q (0) + ε q (1) + O(ε2), (4.12)

and take the long-time variable to be T = εt , the leading-order equation is

∂q
∂t

(0)

= M0q (0). (4.13)

Since the vorticity is symmetric about y = 0, the solution to our system is simply

q (0) = S+(T )ŝ+ exp(iσ t) + S−(T )ŝ− exp(−iσ t), (4.14)

where ±iσ are the eigenvalues of M0 and ŝ± are the right eigenvectors; that is,

M0 ŝ± = ±iσ ŝ±. (4.15)

Moreover, we define the adjoint problem

ŝ†
±M0 = ±iσ ŝ†

±. (4.16)

When σ = ω/2 we can let

q (1) = q+(t) exp(iσ t) + q−(t) exp(−iσ t) + qr (4.17)

and the second-order equation then becomes

∂q±

∂t
− [M0 ∓ iσ ]q± +

dS±

dT
ŝ± = 1

2
M1 ŝ∓S∓. (4.18)

Multiplying by the adjoints and requiring that the vectors q± do not grow on the
short time scale gives

(ŝ†
± ŝ±)

dS±

dT
= 1

2
(ŝ†

±M1 ŝ∓)S∓. (4.19)

These two equations are combined to yield two identical scalar second-order equations
in T :

d2S±

dT 2
=

1

4

(ŝ†
+M1 ŝ−)(ŝ†

−M1 ŝ+)

(ŝ†
+ ŝ+)(ŝ†

− ŝ−)
S±. (4.20)

If the quantity in front of S± is positive, the basic state is unstable and the square
root of this quantity gives the slope at which the growth rate increases in terms of ε.
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The left and right eigenvectors are

ŝ± =

[
−δ exp(−K)

±ω − K(δ − q0) + δ

]
, ŝ†

± =

[
δ exp(−K)

±ω − K(δ − q0) + δ

]T

. (4.21)

When we substitute these into (4.20), we conclude that the growth rate (in T ) is

Σ =
|q0|K exp(−K)

4ω2
, (4.22)

with the four parameters K , q0, δ and ω related by

(K(1 − q0/δ) − 1)2 − exp(−2K) =
ω2

δ2
. (4.23)

This equation is equivalent to (4.3) with σ = ω/2. If we consider the first three
parameters to be independent and the frequency to be dependent, we can rewrite
(4.22) in terms of the independent variables:

Σ =
|q0|K exp(−K)

4δ2[(K(1 − q0/δ) − 1)2 − exp(−2K)]
. (4.24)

The growth rate of the first subharmonic is equal to εΣ .

4.3. Pure parametric instability

To explore beyond the asymptotic limit of small-amplitude oscillations, we use Floquet
theory and solve the problem numerically. Figure 2 shows the results from a series
of calculations for various wavenumbers and forcing amplitudes. The solid lines are
the numerical approximations to the transition curves for the first subharmonic, first
harmonic and second subharmonics. These curves should extend down to the K-axis
but do not because of the limited resolution in K and small numerical error that arises
in each integration. The dashed lines are contours of the net growth after one period
with increments of 5/(2π) × 10−2, 5/(2π) × 10−3 and 5/(2π) × 10−4 for the lower three
plots respectively. Our calculations indicate that for ε � 0.1 the numerical solution of
the Floquet problem is linear, as predicted from the multiple-scales analysis. Beyond
this range, small quadratic deviations are present.

We tailor equation (4.3) to the specific parameters under consideration and obtain

4n2 = (K + 1)2 − exp(−2K). (4.25)

The transition wavenumbers for n= 1, 2, 3 are K = 1.0315, K = 3.0003 and K =
5.0000. For larger n the solutions are, to a very good approximation, K = 2n − 1.
The growth rate for the first subharmonic region, calculated from equation (4.22), is
0.091925ε. The one calculated from the direct linear stability calculation is accurate
to this many significant digits.

The instability tongues in figure 2 are similar to that of Mathieu’s equation in
several ways. First, the unstable regions originate from the transition wavenumbers,
as predicted from the leading-order theory. Second, the transition curves for the first
subharmonic are linear and those for the higher harmonics are quadratic or higher.
Third, the growth rate increases with ε more slowly on moving to higher harmonics.
By plotting slices of this figure for fixed values of ε, we have observed that the growth
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Figure 2. The upper plot depicts the stability boundaries of the first three unstable regions;
first subharmonic, first harmonic and second subharmonic. The lower three focus on each
of these modes and show the stability boundaries along with equally spaced growth rate
contours. The dashed lines are contours of the growth rates in one period, with increments of
5/(2π) × 10−2, 5/(2π) × 10−3 and 5/(2π) × 10−4 for the lower three figures respectively.

rate decays exponentially with the wavenumbers, as predicted by equation (4.22).
The growth rate decreases with wavenumber because the instability requires that the
interfaces be in close proximity to each other (in comparison with the cross-stream
decay scale for the waves) so that they can interact.

In figure 3, we plot the growth and phase of the disturbance for the wavenumber
K = 1.02 at ε = 1/2 throughout one period. In the top and bottom rows, we plot the
modulus and phase of the growing and decaying modes, respectively. The solutions
are obtained by numerically integrating the governing system for one period with the
eigenvectors of the Floquet matrix as the initial conditions. Observe that the plots
of the modulus have only one curve, as is true in general, since the perturbation
vorticities at the two interfaces grow equally at all times. The majority of the growth
(decay) occurs during the first and final quarters of the forcing period; this coincides
with the intervals where cos(ωt) is positive. We speculate that during these times
the resonant triad, between the two waves and the basic state, can most effectively
extract energy from the mean flow. The phases of the interfaces y = −a and y = a

decrease and increase, respectively, by a factor of π radians, as is required for it to
be a first subharmonic. Clearly, there is a qualitative difference between pure and
mixed oscillatory flows since our simple example of the latter produces parametric
instability but the entire class of the former possesses none.
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Figure 3. First subharmonic; K = 1.02, ε = 1/2. The two plots in the left column show that
the modulus of the growing and decaying modes have the same functional dependence on
time. The phase plots show that the change in phase after one period is π, which indicates that
this is the first subharmonic.

To derive a necessary condition for parametric resonance, consider (4.11) for the
general case where the matrices M0 and M1 are arbitrary but constant. If they
commute, as is true for pure oscillatory flow since M0 = M1, the exact solution is

q = exp

(
M0t + εM1

sin(ωt)

ω

)
q0. (4.26)

This solution does not give rise to parametric instability since the only instabilities
are those that exist when ε = 0. Therefore, a necessary condition for parametric
resonance is that M0 and M1 do not commute, as is the case with Mathieu’s equation
and with equation (4.1). In general, we expect that dynamical systems described by
equation (4.11) will have matrices that do not commute so that parametric instability
will be a common phenomenon in periodic flows.

Our example demonstrates that even though every snapshot in time is stable, and
hence the average is certainly stable, the oscillatory flow may be unstable; the time
dependence must be incorporated to properly determine the stability of the flow and
the growth rates of disturbances. In modelling geophysical phenomena, one often
uses the average flow as representative of the time-dependent flow. This may seem
like a good approximation but it cannot account for instabilities that are inherent to
the time-dependent nature of the flow.
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Figure 4. The transition from the purely barotropic instability to mixed barotropic–parametric
instability. As ε increases, the growth rate of the barotropic mode gradually decreases and
parametric modes are introduced and become more unstable.

4.4. Mixed barotropic–parametric instability

We now consider how barotropically unstable modes are affected by oscillatory
shear through exploring the example of q0 = −1, δ = 1/2 and ε = 0, 1/4, and 1/2. A
qualitative difference from the example in the previous subsection is that at every
instant in time this case is barotropically unstable. The calculations of the growth
rates within a period are presented in figure 4. The top plot shows the growth rates
for the three different ε and the bottom two focus in on the two separate modes: the
barotropic and the parametric. As ε increases from 0 to 1/2, the barotropic modes are
stabilized: the maximum growth rate decreases and the range of the barotropic modes
decreases. Moreover, as ε increases, parametric modes are introduced, their growth
rates increase, and their range of unstable wavenumbers increases. This example
illustrates how oscillations can either stabilize or destabilize waves, in comparison to
the stability of the time-averaged state.

To predict the position of these transition points we specialize (4.3) to the case
where q0 = −1:

4n2 = (3K − 1)2 − exp(−2K). (4.27)

We solve this nonlinear algebraic equation for n = 1, 2, 3 and find that the transition
wavenumbers are K = 1.0109, K = 1.6681 and K = 2.3336, respectively. For larger
n the solutions are, to a very good approximation, K = (2n + 1)/3. We apply the
multiple-scale analysis and deduce that the growth rate of the first subharmonic is
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Figure 5. The first subharmonic mode in the case of mixed barotropic–parametric instability;
K = 1, ε = 1/2. It behaves qualitatively in the same fashion as the example of pure parametric
instability.

0.091965ε. The linear coefficient in the growth rate calculated from directly solving the
linear problem is accurate to within 10−6. The first subharmonic wavenumber from
this example differs by only 10−2 from the one obtained in case of pure parametric
instability. This causes a difference of 10−3 in the coefficient of the growth rate. In
figure 5, we present the growing and decaying modes for ε = 1/2 for the wavenumber
K = 1. The similarities of the modulus and phase between this figure and those
in figure 3 imply that these first subharmonic modes are the same. These results
suggest that the strength of the parametric instability is independent of whether the
oscillatory flow is stable or unstable.

Figure 6 shows the results for the same values as before except that ε = 1/10. The
phase plots are similar to before but the growth rates differ. Both the unstable and
stable modes grow for the first half of the period and then decay for the second half;
however, the amount of growth does not equal the amount of decay.

The final set of structural plots in figure 7 shows how the barotropic mode is altered
by strong oscillations, in particular ε = 1/2. The growth plots are not exponential, as
in the steady case, but resemble those of figure 3. The phase plots, which are constant
in the steady case, develop wiggles but the waves do not have a significant phase shift,
if any, after one period. Therefore, the phase shift after one period gives a means for
differentiating between the barotropic and parametric modes in the regime of strong
oscillations.
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Figure 6. The first subharmonic mode for parametric instability with smaller forcing
amplitude (ε = 1/10) than in figure 5. The result is that the growth is very slight but the phase
difference is essentially the same.

5. Continuous profiles
We next study temporally periodic shear flows with continuous vorticity profiles.

This work will demonstrate that parametric instability is not an artifact of the
non-smoothness of the piecewise-linear velocity fields, but is indeed a real physical
mechanism for instability. Our model is the same as before, a steady background
shear superimposed upon an oscillatory jet, but now the oscillatory flow is taken to
be continuous. In particular, we choose a family of Gaussian-like vorticity profiles of
the form

S(t) exp(−(2y)2n), (5.1)

where n is a positive integer. In the limit as n → ∞, they converge to the two-contour
example studied in § 4. For any finite value of n, the basic state is smooth. As n

increases, so does the steepness of the vorticity. Figure 8 illustrates the two-contour
vorticity, the vorticity of several members of this family and the hyperbolic tangent
shear layer profile, i.e. q̄ = sech2(2y).

5.1. Linear stability analysis

The linear stability analysis of the previous sections is extended to study this model
with an arbitrary number of contours. The mean shear has vorticity q0 and the
oscillatory vorticity is given by equation (5.1) with S(t) = δ + ε cos(ωt). In particular,
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Figure 7. The barotropic mode altered by parametric resonance. The growth is not expo-
nential, as in the steady case, but is similar to that of a parametric mode. There is also
no net change in the phases of the interfaces.

we set δ = 1/2 = ε and ω = 1. Fjortoft’s theorem can be used to demonstrate that
snapshots of these flows at every instant in time are stable. Therefore, any instabilities
that arise in the oscillatory system are purely parametric in nature.

To solve the linear stability problem we discretized the shear flows into N = 200
contours. By comparing calculations for different resolutions it was determined that
for most of our profiles, the growth rates were predicted well by using as few as
N = 50 contours. The growth rates of parametric instabilities for the subharmonic
region for the vorticity profiles of figure 8 are plotted in figure 9. We have computed
similar plots for other frequencies and we have observed qualitatively similar results.

Observe that increasing values of n yield growth rates that approach the growth
rate of the two-contour example. In particular, as n decreases the instabilities are
weakened and the most unstable modes occur at larger wavenumbers. We have not
plotted the case of n = 1 and the sech2 profile, since they are either stable or their
growth rates are on the same order as the error; we have not found any evidence of
instability for these gradual profiles.

Kelly (1965) discovered instances of parametric instability in the oscillatory Kelvin–
Helmholtz problem by using a one-contour model. He mentions a continuous version
of this problem with the one-contour profile replaced by a hyperbolic tangent profile.
However, contrary to the discrete model, the continuous profile appeared to be
stable. This led him to suggest that parametric instability would not be important
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Figure 8. The oscillatory components of the vorticity used: the two-contour example from
§ 4 along with various Gaussian curves defined in (5.1) and the sech2 jet profile.

in continuous systems. We speculate that if instead he had replaced the one-contour
profile with a velocity profile from our Gaussian family with n � 2, he would have
discovered many examples of parametric instability in a continuous system. Indeed,
this instability requires steep gradients in vorticity and the hyperbolic tangent profile
in velocity is not steep enough. This is why the instabilities appear to be strongest in
the one- and two-contour examples in Kelly (1965) and our work, respectively.

The two-contour example demonstrated that there is an infinite number of unstable
modes, subharmonic or harmonic in nature, with amplitude decaying exponentially
with wavenumber. The continuous flows also show a similar structure. By studying
the first harmonic, we observed the tendency for the growth rates to decrease with
decreasing n and the instabilities to move to larger wavelengths. We surmize that
the same qualities should apply to the higher harmonics; however, since their growth
rates are very small, they are of little physical importance.

5.2. Nonlinear simulations

Our final objective in this section is to study the evolution of parametric instability in
the nonlinear regime. To do so we have performed a series of numerical experiments
that solve the nonlinear barotropic vorticity equation, defined by equations (2.2) and
(2.1), with oscillatory forcing. The numerical method uses the third-order Adams–
Bashford finite-difference scheme to step the vorticity equation forward in time and
a third-order upwind scheme for the advection on a 128 × 128 grid (Fletcher 1991).
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Figure 9. The growth rates of the first subharmonic region for various basic-state profiles
with ω = 1, δ = 1/2, ε = 1/2 and q0 = 1. Note that as n decreases the growth rates decrease
and the instabilities are shifted to larger wavelengths.

There is enough implicit diffusion contained in the advection scheme that no explicit
diffusion was needed to stabilize the method. A spectral scheme is used to invert the
vorticity in order to calculate the stream function. Calculations at different resolutions
were performed to verify that the instabilities were robust and not numerical artifacts.
To plot the solution at increments of the period, we have changed the frequency
to ω = π/4, so that the period is T = 8. The remaining parameters are as before,
ε = 1/2 = δ and q0 = 1, and we study oscillatory vorticity profiles that are members of
the Gaussian family (5.1). In particular, the forcing function is given by equation (2.3).

Figure 10 compares the growth rates calculated from the linear theory with those
computed from the nonlinear simulations. We used monochromatic simulations but
remark that with polychromatic simulations, which include the first six modes that
fit in the domain, we obtained the same structures. The reason is that the geometry is
chosen so that the most unstable mode fits exactly in the domain whereas the other
first subharmonics do not and, therefore, cannot grow. Moreover, the harmonics and
higher-order subharmonics are too weak to play a significant role during the stage
of linear growth. Initially, the polychromatic simulations exhibit a blend of the initial
modes. However, the wave k = π eventually appears and then grows exponentially,
surpassing all other structures in the system. The linear and nonlinear calculations of
the growth rate vary by no more than 4%.

The amplitude for n = 4 is plotted in figure 11 in two semi-log plots; plot (b)
magnifies a region in (a). In the interval from t = 40 to t = 150, the envelope of
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Figure 11. A plot of the amplitude as a function of time for the case of n = 4; (b) is a
magnification of the boxed region in (a). Observe the interval in time where the envelope of
the curve is linear, meaning that the growth is exponential. Plot (b) shows that during one
period, the amount of growth is asymmetric with respect to the amount of decay.

the curve grows linearly, signifying exponential growth. Note that the increase is not
monotonic, as needed be for steady instabilities, but rather the growth after every
period is monotonic. Throughout each period of linear growth there are intervals of
growth and decay, the former being shorter but steeper than the latter. The asterisks
in figure 11(b) mark the regions of growth.
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The structures of the growing instabilities for n = 2 are illustrated in figure 12;
(a) and (b) are obtained from the linear and nonlinear calculations, respectively. The
size and shape of the structures are very similar. This, coupled with the strong
quantitative similarity in the growth rates computed from linear and nonlinear
calculations, signifies that the linear theory is indeed accurate in predicting the
onset of instability. We remark that the similarity worsens with increasing n, because
the structures decrease in size and the grid cannot resolve them as well.

In all of these instabilities, there are two lines of alternating elliptical vortices that
appear, centred at y = ±0.5, where the vorticity of the oscillatory state is steepest.
The aspect ratios of the minor and major axes are O(10−2) which gives eccentricities
close to 1. We note that the width of these eddies tends to shrink with increasing
n. During the stage of linear growth the eddies centred at y = ±0.5 travel in the
negative and positive x-directions, respectively, at constant and equal phase speeds.
The phase speeds are such that each vortex returns to its original position after two
periods, i.e. c = π/(kT ). This indicates that this instability is indeed subharmonic.

The results from one particular simulation with n = 4, at a resolution of
256 × 256, can be found at the web site http://puddle.mit.edu/˜glenn/fjpoulin/
which contains simulations of the perturbation vorticity and total vorticity in gif
and mpeg format (P8n4k067perturb.gif, P8n4k067perturb.mpg, P8n4k067total.gif and
P8n4k067total.mpg). Figure 13 shows ten snapshots of the total vorticity as the basic
state becomes parametrically unstable and then turbulent. In the simulations, the
perturbations continue to grow until they become order-one quantities, and they then
cease to increase in amplitude. The structures that develop are complicated, but we
describe some qualitative features that arise. In all cases, the motion is chaotic and
generates turbulence. The vortices extend further out laterally, essentially creating a
mixing region that is larger than the width of the jet. We also observe that the cyclones
tend to be larger and stronger and circular. Indeed, the vorticity of these eddies is
larger than 1; the instability has brought some of the exterior fluid down into the
forcing region during the phase when the forcing is causing the vorticity to increase.
This fluid moves out before the forcing reverses and thereby retains its elevated
vorticity. At the end of the experiment, the peak vorticity is 1.98; the minimum value,
−1.02, is less than zero for similar reasons. The anticyclones, in contrast, are generally
thinner, more stretched and filament-like. Presumably, the cyclones are stronger due
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Figure 13. Snapshots of the total vorticity in the turbulent state where the period is T = 8.
The solid and dashed lines denote positive and negative contours, respectively.

to the fact that the background shear is cyclonic. We also note that the phase speeds
of the vortices are precisely those predicted from the linear stability analysis. There
appears to be a symmetry between the two sides of the jet that is composed of a
180◦ rotation and an along-flow translation. However turbulent the flow becomes,
this symmetry always appears to be maintained.
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6. Summary and discussion
Studies of parametric instability in geophysical fluid dynamics have typically focused

on its relevance to gravity waves. There has been little investigation of how they can
arise in oscillatory shear flow. Some of the most notable exceptions are Greenspan
& Benney (1963), Kelly (1965, 1967), Rosenblat (1968) and Pedlosky & Thomson
(2002). The particular physical problem we address had not yet been studied: it is the
interaction of a steady flow with an oscillatory parallel flow in the two-dimensional
vorticity equation without any contracting layers. Most of these other studies have
been limited to linear theory, whereas our analysis goes beyond this and illustrates
the nonlinear evolution of the instability mechanism.

We believe that our work and that of Pedlosky & Thomson (2002) are the most
relevant to atmospheric and oceanic instabilities. Their study differs from and is com-
plementary to the present study in several significant ways. They consider the role of
time-dependent mean shear flows in the baroclinic instability problem so that the
fundamental nature of the instability itself differs. However, in addition, the focus of
their study is the behaviour of the weakly nonlinear dynamics as affected by the time-
dependent shear. This necessitates a restriction to a region in parameter space near the
neutral curve of the classical, steady problem and hence a small alteration of shear as
a function of time. Attention in that study is centred on explaining the qualitatively
different behaviour (e.g. steady, periodic or aperiodic) occurring depending on whether
the time-mean flow is stable or unstable, and, in the former case, whether the
instantaneous flow (the ‘snapshot’) is stable. Instead, here we focus attention on
barotropic velocity profiles of both the broken line and continuous type and examine
the linear problem in detail. We present some strongly nonlinear numerical solutions
that describe the fate of strongly unstable modes of parametric instability.

In our linear analysis, we have determined that all pure oscillatory shear flows of
zero temporal mean are transiently stable. When the mean is non-zero, the oscillatory
flows are unstable for exactly the same wavenumbers that are unstable according to
the steady theory. The linear theory for the two-contour model with a background
steady shear produced parametric instability tongues in parameter space similar to
those in Mathieu’s equation. This instability implies that otherwise stable (unstable)
flows can be destabilized (stabilized) by the oscillations. The multiple-scales method
yielded analytical expressions for the growth rate of the first subharmonic which
agreed with the direct solution of the linear stability problem. The tendency is for
the growth rate of the instability to increase with increasing background shear, but
to decrease with increasing wavenumbers and frequencies. We determined that the
barotropic instabilities that are present in the steady case tend to be damped and
moved to larger wavelengths as a result of the oscillations. Also, regardless of whether
the basic state is stable or unstable at every instant in time, the strength and structure
of the parametric instabilities are very similar.

Finally, we delved into the more physical problem of oscillatory continuous basic
states. The linear stability problem illustrates that parametric resonance does occur
for a large class of oscillatory shear flows that are Gaussian-like. We observed that
shear flows must be sufficiently steep to generate this type of instability and the
two-contour problem of § 4 produces the largest growth rates. We also studied the
nonlinear evolution of some of these unstable states and found a strong similarity
between the growth rates and structures predicted from linear theory and those
calculated from the nonlinear simulations. The vortices produced are stretched and
elliptical in shape, with widths that decrease with increasing basic-state steepness.
After the linear growth ceases, the unstable region becomes wider than the jet and
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generates turbulence. This mixes fluid around the boundary of the jet but not across
the jet.

This article and Pedlosky & Thomson (2002) are the first works to explore the
importance of parametric resonance in the context of horizontal and vertical shears,
respectively, in time-dependent shears for large-scale geophysical flows. Given that a
theoretical foundation has now been set, it is of great interest to study geophysical
oscillatory flows such as the Semi-Annual Oscillation (Shepherd 2000), the Quasi-
Biennial Oscillation (Baldwin et al. 2001), and the Georges Bank (K. H. Brinks,
personal communication) and Cape Cod Bay Oscillation (Poulin 2002) in order to
observe the parametric modes and how they arise in nature.

The importance of this work spreads beyond periodically forced systems since
amplitude vacillations can be generated in otherwise steady flows through nonlinear
dynamics (Pedlosky 1987). Kelly (1967) studied the case in which oscillations from the
primary instability can interact with the basic state to generate a secondary instability
that is even stronger. However, this was done for only one particular profile. Indeed,
there is a large range of problems in which the primary instability can interact with
the mean flow in order to destabilize or perhaps stabilize the flow. This is an important
issue in the transition to turbulence that requires further investigation.

This work also shows the possible incompleteness of using averaged profiles in
geophysical situations as the basis for parameterizations for eddy fluxes of heat
and momentum. There may certainly be instances when averaging yields meaningful
results; however, there must also be regimes where they fail since they cannot account
for parametric instability. It is of great significance to try to determine in what regimes
we cannot expect parameterizations to yield meaningful results.
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